Skip to main content

8.7 Peroxide Forming Compounds

Many commonly used chemicals; organic solvents in particular, can form shock, heat, or friction sensitive peroxides upon exposure to oxygen. Once peroxides have formed, an explosion can result during routine handling, such as twisting the cap off a bottle – if peroxides are formed in the threads of the cap. Explosions are more likely when concentrating, evaporating, or distilling these compounds if they contain peroxides.

When these compounds are improperly handled and stored, a serious fire and explosion hazard exists. The following guidelines should be adhered to when using peroxide forming chemicals:

  1. Each peroxide forming chemical container MUST be dated when received and opened. A list of common peroxide forming chemicals can be found in the appendix. Those compounds in the appendix listed in Table A should be disposed of within 3 months of opening and those compounds in the appendix listed in Tables B, C, and D should be disposed of within 12 months of opening.
  2. Each peroxide forming chemical container must be tested for peroxides when opened and at least every 6 months thereafter. The results of the peroxide test and the test date must be marked on the outside of the container. There are sample peroxide labels on the Signs and Labels webpage.
  3. Peroxide test strips can be purchased from the Chemistry Department stockroom or from a variety of safety supply vendors, such as VWR and Laboratory Safety Supply. An alternative to peroxide test strips is the KI (potassium iodide) test. References such as Prudent Practices in the Laboratory and the American Chemical Society booklet Safety in Academic Chemistry Laboratories outline ways to test for peroxides and ways to remove them if discovered. When using the test strips, if the strip turns blue, then peroxides are present. Light blue test results may be acceptable for use if your procedure does not call for concentrating, evaporating or distilling. Containers with darker blue test results must be deactivated or disposed of. You can test older test strips for efficacy with a dilute solution of hydrogen peroxide.
  4. Due to sunlight’s ability to promote formation of peroxides, all peroxidizable compounds should be stored away from heat and sunlight.
  5. Peroxide forming chemicals should not be refrigerated at or below the temperature at which the peroxide forming compound freezes or precipitates as these forms of peroxides are especially sensitive to shock and heat. Refrigeration does not prevent peroxide formation.
  6. As with any hazardous chemical, but particularly with peroxide forming chemicals, the amount of chemical purchased and stored should be kept to an absolute minimum. Only order the amount of chemical needed for the immediate experiment.
  7. Ensure containers of peroxide forming chemicals are tightly sealed after each use and consider adding a blanket of an inert gas, such as Nitrogen, to the container to help slow peroxide formation.
  8. A number of peroxide forming chemicals can be purchased with inhibitors added. Unless absolutely necessary for the research, labs should never purchase uninhibited peroxide formers.
  9. Before distilling any peroxide forming chemicals, always test the chemical first with peroxide test strips to ensure there are no peroxides present. Never distill peroxide forming chemicals to dryness. Leave at least 10-20% still bottoms to help prevent possible explosions.

While no definitive amount of peroxide concentration is given in the literature, a concentration of 50 ppm should be considered dangerous and a concentration of >100 ppm should be disposed of immediately. In both cases, procedures should be followed for removing peroxides or the containers should be disposed of as hazardous waste.

However, compounds that are suspected of having very high peroxide levels because of age, unusual viscosity, discoloration, or crystal formation should be considered extremely dangerous. If you discover a container that meets this description, DO NOT attempt to open or move the container. Notify other people in the lab about the potential explosion hazard and notify EHS at 607-255-8200 immediately.

For those compounds that must be handled by an outside environmental “bomb squad” company, the cost for such an operation can result in charges of >$1000 per container. However, if laboratory staff follow the guidelines listed above, the chances for requiring special handling for these types of containers or for an explosion to occur is greatly diminished.

The appendix contains a listing of common peroxide forming chemicals. Please note this list is not all-inclusive, there are numerous other chemicals that can form peroxides. Be sure to read chemical container labels, SDSs, and other chemical references.